
3 Thermodynamique de sous systèmes simples

La thermodynamique des systèmes simples ne permet pas de décrire des trans-
ferts irréversibles de chaleur et de matière et des déformations irréversibles.
Nous devons alors diviser le système en sous systèmes simples qui sont car-
actérisées par leur paroi comportant certaines caractéristiques. Leurs états sont
définis par les variables d’état, l’évolution temporelle est caractérisée par les
fonctions d’état et les déformations et transferts sont décrits par les courants et
les puissances.

Avant de commencer à étudier les parois, nous vous conseillons de revoir
rapidement la section 1.1 qui donne les définitions nécessaires.

3.1 Paroi fixe, diatherme, imperméable

En premier lieu, il est possible de se représenter ce système grâce au schéma de
la figure 1:

Figure 1: schéma d’un système à paroi fixe, diatherme et imperméable

Rappelons tout d’abord que l’énergie interne ainsi que l’entropie sont des
variable d’état extensive donc S = S1 +S2 (resp U) ou 1 et 2 désignent les sous
systèmes correspondants. Le système étant isolé, U̇ = 0. Dans chaque sous
systèmes, il est alors possible de noter:

U̇1(S1) = T1(S1)Ṡ1 = I2→1
Q = I1→2

Q (resp 2 ) (16)

et après quelques calculs simples (voir slides 11-13 pour précisions mais il
est bin de le retrouver par sois même au moins une fois), il est alors possible de
trouver:

∂S

∂U1
=

1

T1(U1)
− 1

T2(U2)
= 0 → T1(U1) = T2(U2) (17)

Cela montre alors qu’a l’équilibre, les températures des deux systèmes doivent
être identiques. De plus, La condition d’évolution du deuxième principe im-
plique que le transfert de chaleur dans un système isolé ait lieu du sous-système
le plus chaud au sous-système le plus froid.
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Pour ce système, il est possible d’écrire la Source d’entropie comme:

ΣS =
( 1

T1(S1)
− 1

T2(S2)

)
I2→1
Q ⩾ 0 (18)

Et au voisinage de l’équilibre thermique, la source d’entropie doit être de la
forme quadratique, soit:

ΣS = AQ

( 1

T1(S1)
− 1

T2(S2)

)2

> 0 AQ =
κA

lT1(S1)T2(S2)
(19)

Ou κ est la conductivité thermique, A est l’aire de la paroi et l est l’épaisseur
de celle-ci. On en déduit alors une loi discrète appelée la Loi de Fourier:

κ
A

l

(
T1(S1)T2(S2)

)
(20)

Pour les autres systèmes présentés au cours, nous nous en tiendrons à relever
les points importants sans faire tout un descriptif comme dans la section précédente.

3.2 Paroi mobile, diatherme, imperméable

Le système dont nous parlons ici peut être représenté par la figure 2.

Figure 2: schéma d’un système à paroi mobile, diatherme et imperméable

On rappelle qu’une paroi imperméable veut dire qu’elle ne permet pas d’échange
de matière, alors IC = 0. Nous avons néanmoins des déformations et des trans-
ferts de chaleur, pouvant influer sur l’énergie interne de chaque sous systèmes, ce
qui ce traduit pour un système fermé (conservation de l’énergie interne) comme
ici par l’équation suivante:

P 1→2
W + I1→2

Q = −P 2→1
W − I2→1

Q (21)

On rappelle aussi que l’on peut écrire U̇ = T Ṡ − pV̇ = PW − IQ pour ce
système (cf eq14) .
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On peut aussi isoler la puissance mécanique P 2→1
W = −p1(S1,V1)V̇1 (resp 2).

Après quelques calculs que vous pourrez retrouver slides 24-25 du cours, nous
trouverons alors que:

∂S

∂V1
=

1

T (U1,V1)

(
p1(U1,V1) − p2(U2,V2)

)
(= 0 à l’équilibre) (22)

Ce qui nous prouve alors bien que l’équilibre mécanique se traduit bien par
le fait que p1(U1,V1) = p2(U2,V2).

La source d’entropie peut ainsi s’écrire comme:

ΣS = Ṡ =
1

T (U1,V1)

(
p1(S1,V1) − p2(S2,V2)

)
V̇1 ⩾ 0 (23)

et en utilisant cette équation et le second principe de la thermodynamique il
vient alors qu’une compression dans un système isolé doit s’effectuer par le
sous-système avec la plus grand pression sur le sous-système avec la plus petite
pression. Au voisinage de l’état d’équilibre mécanique, nous avons alors
(comme dans la partie précédente):

ΣS = AW

(
p1(S1,V1)−p2(S2,V2)

)2

= ξV̇1 > 0 AW =
1

ξT (S1,V1)
> 0 (24)

d’où on tire la loi de Stokes:

p1(S1,V1) − p2(S2,V2) = ξV̇1 (→ p(S,V ) − pext(Sext,Vext) = ξV̇ (25)

Où ξ est le coefficient de frottement thermoélastique de la paroi

3.3 Paroi fixe, diatherme, perméable

Le système étudié dans cette partie peut être représenté par la figure 4.

Figure 3: schéma d’un système à paroi mobile, diatherme et imperméable
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Précisons que le système globale est fermé et isolé. Nous noterons que étant
donné que la paroi est fixe, nous avons ici que P i→j

W = 0 et la paroi perméable

nous dit que Ṅ1 = −Ṅ2.

Nous pouvons écrire l’équation bilan de ce système comme:

Ṅ1 = I1 + ΣS = I1→2 =
I1→2
C

µ1(S1,N1)
(resp 2) (26)

Ainsi par le premier principe de la thermodynamique, il est possible d’écrire
la variation de l’énergie libre U̇ comme:

U̇1(S1,N1) = T (S1,N1)I2→1
S + µ1(S1,N1)I2→1 = I2→1

Q + I2→1
C (27)

On peut alors noter la dérivée temporelle de l’entropie

dS =
1

T (S1,N1)

(
µ2(S2,N2) − µ1(S1,N1)

)
dN1 (28)

Par ailleurs, selon le second principe de la thermodynamique, l’entropie doit
être maximale à l’équilibre, alors ∂S

∂N1
= 0 qui est satisfait lorsque µ1(U1,N1) =

µ2(U2,N2), alors l’équilibre du système requièrent que les potentiels chimiques
des sous-systèmes aient la même valeur à l’équilibre chimique. Ensuite, comme
dans les précédentes sous parties, en calculant la variable ΣS , nous pouvons en
déduire que la condition d’évolution du deuxième principe implique que le trans-
fert de matière ait lieu du sous-système avec le plus grand potentiel chimique
vers le sous-système avec le plus petit potentiel chimique.

Après quelques calculs, nous trouvons rapidement que au voisinage de l’équilibre
chimique, on trouve:

ΣS = AC

(
µ2(S2,N2) − µ1(S1,N1)

)2

> 0 AC =
FA

lT (S1,N1)
(29)

Ou nous trouvons alors la loi de Fick (qui est une loi discrète:

I2→1 = F
A

l

(
µ2(S2,N2) − µ1(S1,N1)

)
(30)

Avec F le coefficient de diffusion de la paroi.

3.4 Paroi mobile, diatherme et perméable

Le système étudié dans cette partie peut être représenté par la figure 4. (Ouai
c’est la même formulation que la partie d’avant mais je fais plus d’effort mdr)

Ici on a alors:

U̇1(S1,V1,N1) = T1(S1,V1,N1)Ṡ1 − p1(S1,V1,N1)V̇1 + µ1(S1,V1,N1)Ṅ1 (31)

Ṡ1 =
1

T1(S1,V1,N1)

(
U̇1(S1,V1,N1) +p1(S1,V1,N1)V̇1−µ1(S1,V1,N1)Ṅ1 (32)
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Figure 4: schéma d’un système à paroi mobile, diatherme et perméable

Ainsi, grâce à l’équation 32 et quelques manipulations similaires, nous pouvons
trouver que pour que les conditions d’équilibre soient satisfaites, il faudrait nous
faudrait:

∂S

∂U1
= 0

∂S

∂V1
= 0

∂S

∂N1
= 0 (33)

Lorsqu’un système comme celui-ci est à l’équilibre, il est alors simultanément
à l’équilibre thermique, mécanique et chimique.

3.5 Applications

Regardons pour commencer un système constitué de 2 blocs superposés

L’énergie interne U est une fonction de la température T et du nombre
N de moles de matière, on peut l’écrire comme U = CV T = 3NRT avec CV la
capacité thermique isochore.

Un système est non simple si il n’existe pas de référentiel par rapport
auquel l’énergie cinétique de translation s’annule.

Par la définition de l’energie vu en cours de mécanique, on peut écrire que
Ė(P1,S1,S2) = P ext = F ext · v1 alors en utilisant de plus la dérivée tem-
porelle de l’énergie interne U̇ = 3NRṪ = F ext · v1 on peut alors écrire le taux
d’accroissement de la température

Ṫ =
F ext · v1

3NR
=

Ė

3NR
> 0 (34)

Figure 5: Schéma du montage con-
stitué de 2 cylindres

Rappelons que dans un système adia-

batiquement fermé, Ṡ = ΣS = Ė
T > 0.

Regardons maintenant un système
constitué de 2 cylindres superposés
en rotation à des vitesses angulaires
différentes.

16



On pourra alors exprimer l’énergie du
système comme

E(L1,S1,S2) =
1

2
L1 · ω1 + U(S1,S2)

(35)
Avec L1 le moment cinétique du cylindre
et ω1 la vitesse angulaire relatif du 1er cylindre par rapport au second. En
utilisant la même méthode que dans le premier exemple, on trouvera alors que
le taux d’accroissement de la température s’exprimera comme:

Ṫ =
R1 × F ext) · ω1

3NR
=

Ė(L1,S1,S2)

3NR
> 0 (36)

Le reste des applications utilisent des notions de mécanique ainsi que des
notions de thermodynamique expliqués plus haut dans ce document et
sera donc laissé à faire par l’étudiant.
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