3 Thermodynamique de sous systemes simples

La thermodynamique des systemes simples ne permet pas de décrire des trans-
ferts irréversibles de chaleur et de matiere et des déformations irréversibles.
Nous devons alors diviser le systeme en sous systemes simples qui sont car-
actérisées par leur paroi comportant certaines caractéristiques. Leurs états sont
définis par les variables d’état, 1’évolution temporelle est caractérisée par les
fonctions d’état et les déformations et transferts sont décrits par les courants et
les puissances.

Avant de commencer & étudier les parois, nous vous conseillons de revoir
rapidement la section qui donne les définitions nécessaires.

3.1 Paroi fixe, diatherme, imperméable

En premier lieu, il est possible de se représenter ce systéeme grace au schéma de
la figure [T}
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Figure 1: schéma d’un systéeme a paroi fixe, diatherme et imperméable

Rappelons tout d’abord que 1’énergie interne ainsi que l’entropie sont des
variable d’état extensive donc S = S1 + S5 (resp U) ou 1 et 2 désignent les sous
systemes correspondants. Le systeme étant isolé, U = 0. Dans chaque sous
systemes, il est alors possible de noter:

U(S1) = Ti(S1)S1 = Iczgﬁl = 1(12»2 (resp 2) (16)

et apres quelques calculs simples (voir slides 11-13 pour précisions mais il

est bin de le retrouver par sois méme au moins une fois), il est alors possible de
trouver:

oS 1 1
ou;  Ti(Up) Ta(Us)
Cela montre alors qu’a I’équilibre, les températures des deux systemes doivent
étre identiques. De plus, La condition d’évolution du deuxieme principe im-
plique que le transfert de chaleur dans un systéme isolé ait lieu du sous-systeme
le plus chaud au sous-systeme le plus froid.

=0 — Tl(Ul) :TQ(UQ) (17)
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Pour ce systeme, il est possible d’écrire la Source d’entropie comme:

1 1 2—1
s = (T1(S1) - T2(S2)>IQ - 18)

Et au voisinage de 1’équilibre thermique, la source d’entropie doit étre de la
forme quadratique, soit:

1 1 2 KA
Zs=to(gsy nen) 70 S mEomes O

Ou k est la conductivité thermique, A est I’aire de la paroi et [ est I’épaisseur
de celle-ci. On en déduit alors une loi discrete appelée la Loi de Fourier:

/{% (T1 (S )Tz(sz)) (20)

Pour les autres systemes présentés au cours, nous nous en tiendrons a relever
les points importants sans faire tout un descriptif comme dans la section précédente.

3.2 Paroi mobile, diatherme, imperméable

Le systeme dont nous parlons ici peut étre représenté par la figure
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Figure 2: schéma d’un systeme a paroi mobile, diatherme et imperméable

On rappelle qu’'une paroi imperméable veut dire qu’elle ne permet pas d’échange
de matiere, alors I = 0. Nous avons néanmoins des déformations et des trans-
ferts de chaleur, pouvant influer sur I’énergie interne de chaque sous systemes, ce
qui ce traduit pour un systéme fermé (conservation de I’énergie interne) comme
ici par ’équation suivante:

PI}V—>2 _,'_Ié—ﬂ - _ I%V_ﬂ _ 622—>1 (21)

On rappelle aussi que 'on peut écrire U=T18— pV = Pw — Ig pour ce
systeme (cf eq14)) .
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On peut aussi isoler la puissance mécanique P21 = —p; (S, Vl)Vl (resp 2).
Apres quelques calculs que vous pourrez retrouver slides 24-25 du cours, nous
trouverons alors que:

a8 1

v W(m(m, Vi) — p2(Us, V2)) (= 0 a I'équilibre) (22)

Ce qui nous prouve alors bien que ’équilibre mécanique se traduit bien par
le fait que p1 (U, V1) = pa(Ua, V2).

La source d’entropie peut ainsi s’écrire comme:

1

Ne=8=—-
o T(Uy, Vi)

(pl(Sl,V1) —p2(52,V2))Vl >0 (23)

et en utilisant cette équation et le second principe de la thermodynamique il
vient alors qu'une compression dans un systeme isolé doit s’effectuer par le
sous-systeme avec la plus grand pression sur le sous-systeme avec la plus petite
pression. Au voisinage de I’état d’équilibre mécanique, nous avons alors
(comme dans la partie précédente):

1

2 .
Y =Aw (p1(51,V1)—P2(52,V2)) =&V >0 Aw = m

>0 (24)
d’ou on tire la loi de Stokes:
pl(Slavl) 7p2(523‘/2) :6‘/1 (4) p(S,V) 7pert(Semt7Vezt) :§V (25)
Ou € est le coefficient de frottement thermoélastique de la paroi

3.3 Paroi fixe, diatherme, perméable

Le systéme étudié dans cette partie peut étre représenté par la figure [4]
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Figure 3: schéma d’un systeme a paroi mobile, diatherme et imperméable
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Précisons que le systeme globale est fermé et isolé. Nous noterons que étant
donné que la paroi est fixe, nous avons ici que Pj;,;”” = 0 et la paroi perméable
nous dit que N; = —Ns.

Nous pouvons écrire I’équation bilan de ce systéeme comme:

. Il—>2
Ni=L+Xg=I""2= ¢ ) (resp 2) (26)

p1 (S, N1
Ainsi par le premier principe de la thermodynamique, il est possible d’écrire
la variation de I’énergie libre U comme:

Ui(S1,N1) = T(Sy, N1)IE! + pa(Sy, No) It = 1570 + 1870 (27)

On peut alors noter la dérivée temporelle de ’entropie

d:
S T

ﬁ(ﬂz(SQ,Ng) —ul(Sl,Nl))le (28)

Par ailleurs, selon le second principe de la thermodynamique, ’entropie doit
oS

étre maximale a 1’équilibre, alors an; = 0 qui est satisfait lorsque up (U1, N1) =
w2 (U, No), alors I’équilibre du systéme requierent que les potentiels chimiques
des sous-systemes aient la méme valeur a 1’équilibre chimique. Ensuite, comme
dans les précédentes sous parties, en calculant la variable ¥ g, nous pouvons en
déduire que la condition d’évolution du deuxieme principe implique que le trans-
fert de matieére ait lieu du sous-systéme avec le plus grand potentiel chimique
vers le sous-systeme avec le plus petit potentiel chimique.

Apres quelques calculs, nous trouvons rapidement que au voisinage de I’équilibre

chimique, on trouve:

ES:AC [LQ(SQ,NQ)*/Ll(Sl,Nl) ’ >0 Ac:FiA (29)
IT(S1,N1)
Ou nous trouvons alors la loi de Fick (qui est une loi discrete:
2—1 A
I :FT(,UQ(SQ’NQ) _M1(515N1)> (30)

Avec F le coefficient de diffusion de la paroi.

3.4 Paroi mobile, diatherme et perméable

Le systéme étudié dans cette partie peut étre représenté par la figure |4l (Ouai
c’est la méme formulation que la partie d’avant mais je fais plus d’effort mdr)
Ici on a alors:
Ur(S1, Vi, N1) = T1(S1, Vi, N1)Sy — pi (S, Vi, Nu)Va + pa (S1, Vi, N1)Ny (31)

1

Sl = m(Ul(Sl"/l,Nl)+P1(Sl7V1’N1)V1 —Ml(SthNl)Nl (32)

15



0 Ll 1(5_*2 ®

H v
2—1
_>
I @

—

L]

IC2}_>1 ‘D

Figure 4: schéma d’un systéeme a paroi mobile, diatherme et perméable

Ainsi, grace a I’équation [32| et quelques manipulations similaires, nous pouvons
trouver que pour que les conditions d’équilibre soient satisfaites, il faudrait nous
faudrait:

oS 08 oS

Lorsqu’un systéeme comme celui-ci est a I’équilibre, il est alors simultanément
a I’équilibre thermique, mécanique et chimique.

3.5 Applications

Regardons pour commencer un systéme constitué de 2 blocs superposés

L’énergie interne U est une fonction de la température T et du nombre
N de moles de matiere, on peut I’écrire comme U = CyT = 3NRT avec Cy la
capacité thermique isochore.

Un systeme est non simple si il n’existe pas de référentiel par rapport
auquel I’énergie cinétique de translation s’annule.

Par la définition de I’energie vu en cours de mécanique, on peut écrire que
E(Pl,Sl,Sg) = Pt = F™' .y, alors en utilisant de plus la dérivée tem-
porelle de ’énergie interne U =3NRT =F".v, on peut alors écrire le taux
d’accroissement de la température

FeXt . Vl E
SNR  3NR (34)

T

Rappelons que dans un systéme adia-
batiquement fermé, S = Xg = % > 0.

Regardons maintenant un systeme
constitué de 2 cylindres superposés
en rotation a des vitesses angulaires
différentes.

16  Figure 5: Schéma du montage con-
stitué de 2 cylindres



On pourra alors exprimer ’énergie du
systéeme comme

1
E(Ly,5,82) = §L1 w1 + U(S1,S2)

(35)
Avec L; le moment cinétique du cylindre
et wy la vitesse angulaire relatif du ler cylindre par rapport au second. En
utilisant la méme méthode que dans le premier exemple, on trouvera alors que
le taux d’accroissement de la température s’exprimera comme:

B xF)w B(Ly, 51, 8:)
N 3NR ~ 3NR

T >0 (36)

Le reste des applications utilisent des notions de mécanique ainsi que des
notions de thermodynamique expliqués plus haut dans ce document et
sera donc laissé a faire par I’étudiant.
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